Molecular Pathology Studies of Mesothelioma in VDC-exposed F344/N Rats

Mark J. Hoenerhoff, DVM, PhD, DACVP National Institute of Environmental Health Sciences

NTP Technical Reports Peer Review Meeting October 29th, 2013

- Programmatic effort to add value to the NTP Technical Reports by providing molecular data
- Molecular data is supportive and complementary to the NTP pathology tumor assessment
- Exploratory studies to provide a better understanding of potential mode of action related to chemical treatment in rodents
- Not used for the levels of evidence call

- Investigative Pathology Group uses a variety of techniques to generate informative data
- Molecular characterization of chemically induced rodent tumors
 - Adjunct to pathology assessment to gain additional understanding of chemical carcinogenesis
 - Differentiate chemically induced tumors from background spontaneous tumors
 - Identify similarities to human cancers based on molecular phenotypes
- Generates supplementary and supportive data for the NTP on molecular characterization of chemically induced rodent tumors

NTP Molecular Pathology Studies Sample Selection

- Sample collection at study laboratory:
 - Collection triggered when treatment-related increase observed
 - Spontaneous and treatment-related tumors > 0.5cm diameter
 - Sectioned in half, one half fixed for histopathology, one half flash frozen in liquid nitrogen
- Sample selection for analysis:
 - Based on tumor size/weight sample concentration and quality
 - Availability of samples in NTP frozen archives
 - Sample viability/quality as assessed by histopathology
 - Minimal hemorrhage and necrosis

- Molecular/Investigative strategies
 - Gene expression (microarray, qPCR arrays)
 - DNA mutation analysis
 - Epigenetics (methylation arrays, pyrosequencing)
 - Protein analysis (IHC, western blotting)
 - Cell culture (in vitro validation), special techniques (LCM)
- Use of these techniques in NTP studies is important in better understanding of how a chemically-induced tumor is different from spontaneous

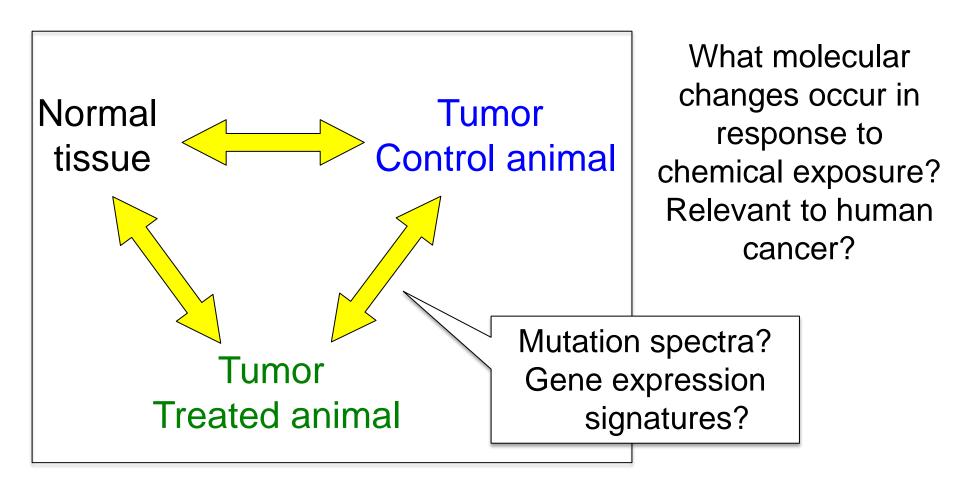
- Must first understand biology of spontaneous background tumors
- Genomic databases developed to compare chemically induced tumors
- Hepatocellular carcinoma, pulmonary carcinoma, mesothelioma

Toxicologic Pathology, 39: 678-699, 2011 Copyright © 2011 by The Author(s) ISSN: 0192-6233 print / 1533-1601 online DOI: 10.1177/0192623311407213

Global Gene Profiling of Spontaneous Hepatocellular Carcinoma in B6C3F1 Mice: Similarities in the Molecular Landscape with Human Liver Cancer

MARK J. HOENERHOFF¹, ARUN R. PANDIRI¹, STEPHANIE A. LAHOUSSE Copyright © 2012 by The Author(s) SCOTT S. AUERBACH², KEVIN GERRISH³, PIERRE R. BUSHEL⁴, K Robert C. Sii

¹Cellular and Molecular Pathology Branch, National Institute o Health, Research Triangle Park, ²Biomolecular Screening Branch, National Institute of Environ Research Triangle Park, No. ³Laboratory of Toxicology and Pharmacology, National Institute Health, Research Triangle Park ⁴Biostatistics Branch, National Institute of Environmental Hea Triangle Park, North C


Toxicologic Pathology, 40: 1141-1159, 2012 ISSN: 0192-6233 print / 1533-1601 online DOI: 10.1177/0192623312447543

Differential Transcriptomic Analysis of Spontaneous Lung Tumors in B6C3F1 Mice: Comparison to Human Non-Small Cell Lung Cancer

ARUN R. PANDIRI^{1,2}, ROBERT C. SILLS¹, VINCENT ZIGLIOLI³, THAI-VU T. TON¹, HUE-HUA L. HONG¹, STEPHANIE A. LAHOUSSE¹, KEVIN E. GERRISH⁴, SCOTT S. AUERBACH⁵, KEITH R. SHOCKLEY⁶, PIERRE R. BUSHEL⁶, SHYAMAL D. PEDDADA⁶, AND MARK J. HOENERHOFF¹

¹Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA ²Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA ³College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA ⁴Laboratory of Toxicology and Pharmacology, NIEHS, Research Triangle Park, North Carolina, USA ⁵Host Susceptibility Branch, NTP/NIEHS, Research Triangle Park, North Carolina, USA ⁶Biostatistics Branch, NIEHS, Research Triangle Park, North Carolina, USA

Gene expression alterations observed in human cancer

NTP Molecular Pathology Studies - Previous

Previous NTP Molecular Studies

Toxicology and Carcinogenesis Studies of Ginkgo Biloba Extract

Toxicology and Carcinogenesis
Studies a Nondecolorized
Whole Leaf Extract of
Aloe Barbadensis Miller

Herbal Supplements

Aloe vera extract (TR577)

Colorectal tumors (rats) qPCR gene expression arrays

Ginkgo biloba extract (TR578)

Hepatocellular carcinoma (mice) Gene expression microarray

NTP Molecular Pathology Studies – Current

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY STUDIES OF TETRABROMOBISPHENOL A

(CAS NO. 79-94-7)

IN F344/NTac RATS AND B6C3F1/N MICE

AND TOXICOLOGY AND CARCINOGENESIS STUDIES

OF

TETRABROMOBISPHENOL A

IN WISTAR HAN [Crl:WI(Han)] RATS

AND B6C3F1/N MICE

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY STUDIES OF COBALT METAL

(CAS NO. 7440-48-4)

IN F344/N RATS AND B6C3F1/N MICE

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF VINYLIDENE CHLORIDE

(CAS NO. 75-35-4)

IN F344/N RATS AND B6C3F1/N MICE

(INHALATION STUDIES)

Flame Retardants

Tetrabromobisphenol A (TR587)

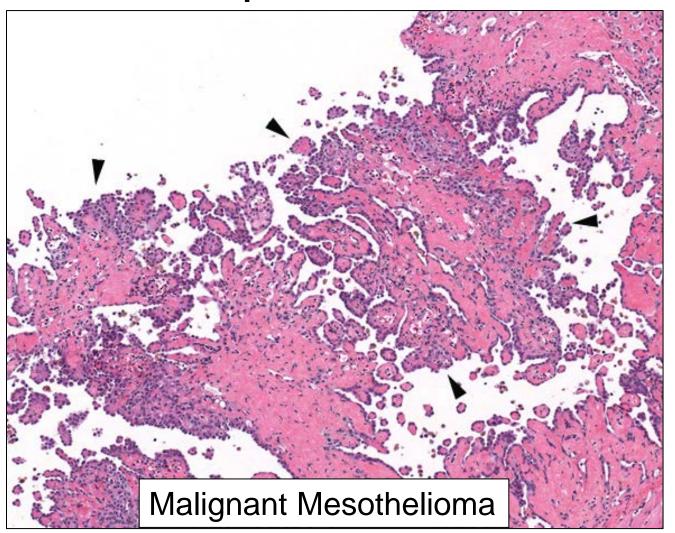
Uterine carcinoma (rats)

Gene mutation analysis

Occupational Hazards

Cobalt metal dust (TR581)

Pulmonary carcinoma (mice)


Large scale gene mutation analysis

Vinylidene chloride (TR582)

Mesothelioma (rats)

Global gene expression microarray

Gene expression studies of mesothelioma in VDCexposed F344/N rats

Malignant Mesothelioma – F344/N Rats

- Low incidence of spontaneous mesothelioma
 - Males: All routes: 26/699, 3.7%; Inhalation studies: 1/200, 0.5%
 - Females: All routes: 0/700, 0%; Inhalation studies: 0/200, 0%
- May be chemically induced by a variety of compounds
 - o-Nitrotoluene, Bromochloroacetic acid, fibers
- Molecular features of rat mesothelioma:
 - Oncogenes (*Mafb, Myc, v-Yes*), tumor suppressor genes (*Tp53*, *Pten, Rassf1*)
 - Cell cycle dysregulation (p21, p27, p16)
 - Growth pathway activation (*Tgfβ*, *Igf1*, *Akt*, *Ctnnb1*, *Ras/Mapk*)
 - -Kim et al., Toxicol Appl Pharmacol 2006; Blackshear et al., Toxicol Pathol, 2013

Malignant Mesothelioma – Research Approach

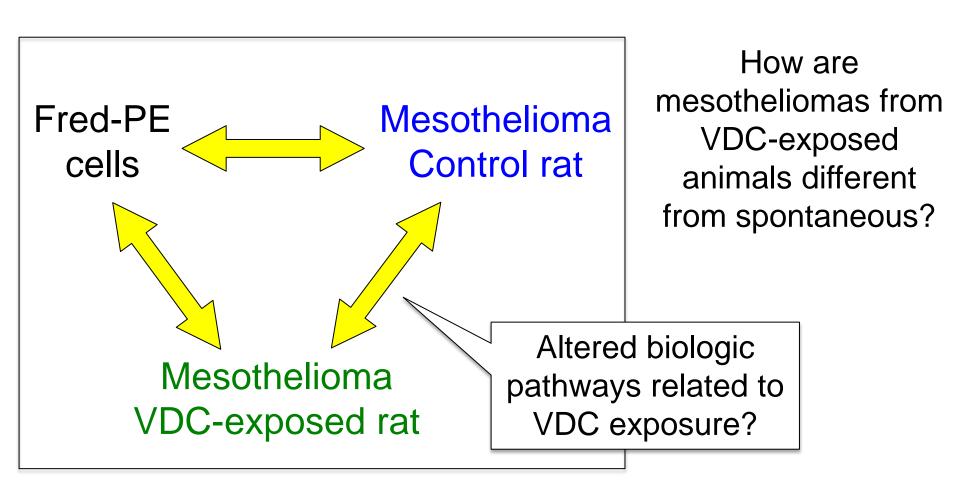
- Characterize gene expression profiles in mesotheliomas from VDC-exposed F344/N rats
- Compared global gene expression profiles by microarray
 - VDC-exposed mesotheliomas (n = 8)
 - Spontaneous mesotheliomas from three other NTP studies (n = 5)
 - Fred-PE immortalized non-transformed cell line as control (n = 6)

Malignant Mesothelioma – Vinylidene Chloride Sample Selection

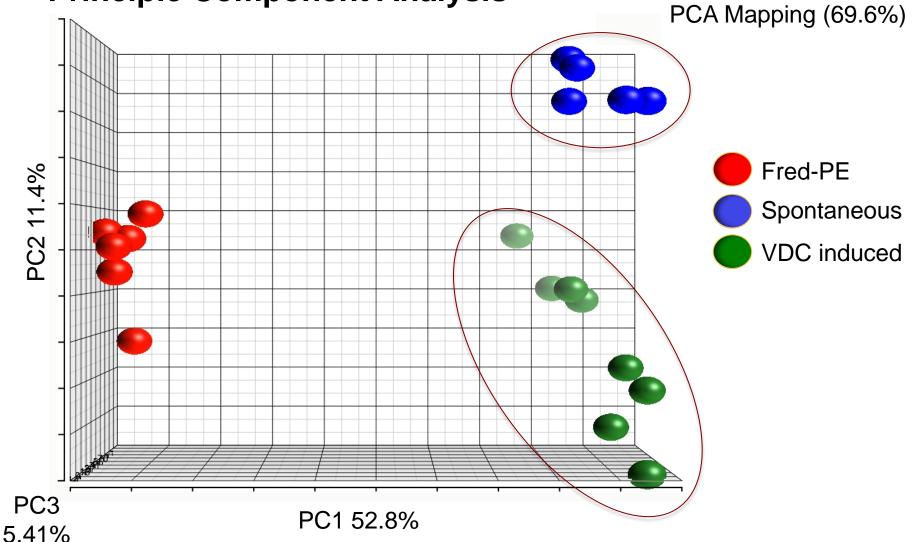
Dose (ppm)	Animal No.	Location
25	236	Peritoneum
50	401	Mesentery
50	402	Mesentery
100	601	Testes capsule
100	613	Testes capsule
100	632	Testes capsule
100	640	Testes capsule
100	646	Testes capsule

Eight tumor samples used in final analysis

Malignant Mesothelioma – Spontaneous Sample Selection

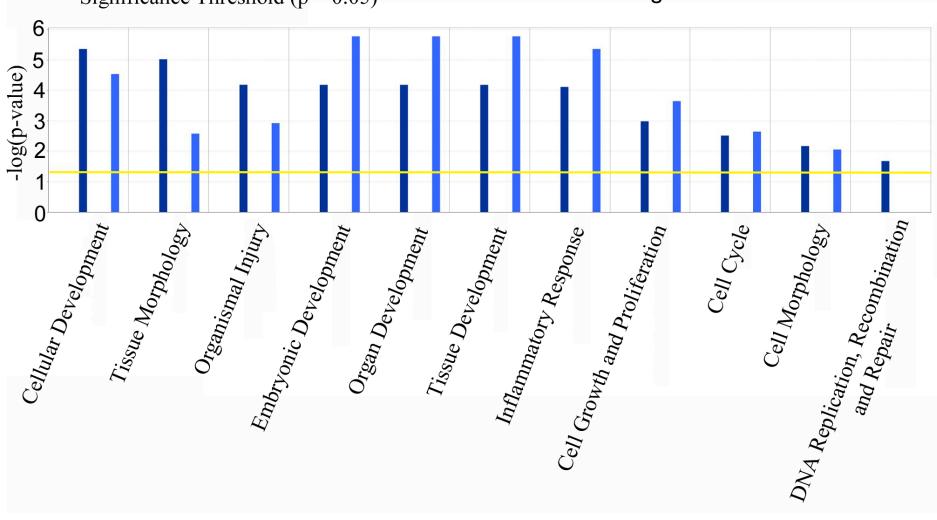

Study	Route	Animal No.	Location
Riddelliine	Gavage	5	Peritoneum
Codeine	Feed	19	Mesentery
Cobalt	Inhalation	34	Mesentery
Cobalt	Inhalation	34	Peritoneum
Cobalt	Inhalation	34	Testes capsule

- Five tumors (3 animals) available for analysis
- Uncommon spontaneous tumor
 - (Historical control same route 0% (0/150), all routes 3% (41/1249)

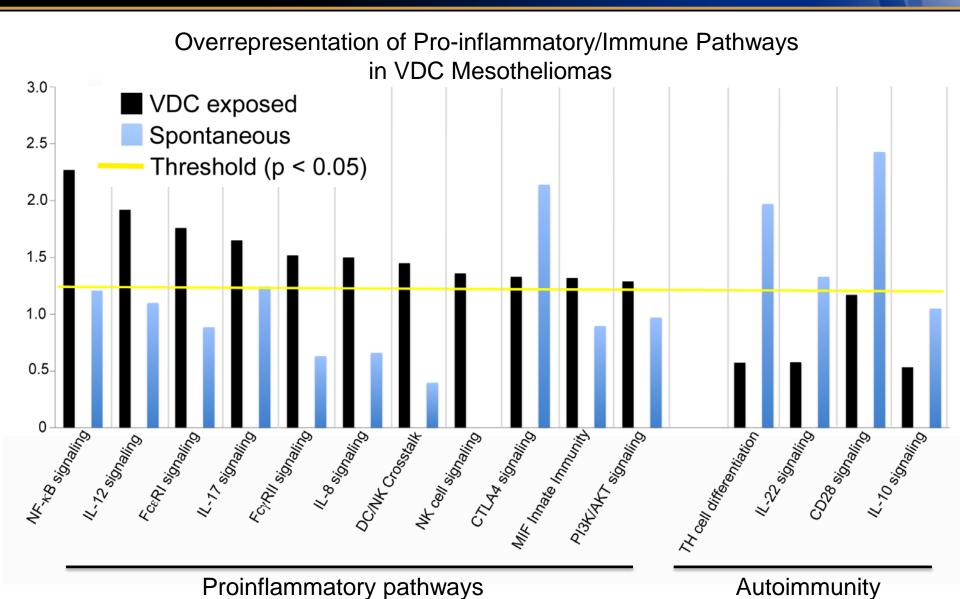

Malignant Mesothelioma – Fred-PE mesothelial cells Sample Selection

- Mesothelial cells cultured from peritoneal cavity of F344 rats
 - Originally isolated by Dr. Fred Angelo, EPA
 - Nontransformed, immortalized mesothelial cell line
 - Commonly used as control tissue in rat mesothelioma studies
 - Mesothelial character confirmed by dual staining with pan-cytokeratin and vimentin

- RNA from these cells was a generous gift from Dr. Yongbaek Kim, North Carolina State University
 - Six samples of varying passages



Malignant Mesothelioma – Vinylidene Chloride Principle Component Analysis


- Vinylidene chloride-exposed
- Spontaneous
- Significance Threshold (p = 0.05)

Top relevant biologic functions in spontaneous and VDC-exposed mesotheliomas related to tumorigenesis

Genes from Top Overrepresented Oncogenic Pathways in VDC and Spontaneous Mesotheliomas

Gene Category	Gene symbols
Growth factors	$Tgf\beta 2$, $Tgf\beta r1$, $Tgf\beta i$, $Vegfc$, $Fgfr2$, $Igf1$, $Igf2bp1$, $Igfbp3$,6
Cell cycle	Cdkn1a, Cdkn1b
Oncogenes	Mafb, Fos, Junb, v-yes
Ras/Mapk pathway	Rasd1, Rnd1, Rnd3, Prkcb, Mapk12, Mapkapk3
Tumor suppressors	Tp53, Lats2
Adhesion molecules	Epcam, Cdh22, Ctnnb1, Itgb2
Apoptosis/arrest	Gadd45b, Bcl2a1, Faim3
Embryonic genes	Plac8, Wnt4, Plau, Gata5
Matrix remodelers	Epcam, Col6a1, Col6a2, Itgb2
Transporters	Slc7a7, Slc7a9, Slc28a2, Abca4
Mesothelial markers	Krt18, Krt19, Thbd, Des
Reactive O2	Duox2, Gpx2

Genes from Overrepresented Pathways in Vinylidene Chloride-Exposed Mesotheliomas

Gene Category	Gene symbols
Chemokines	Ccl5, Ccl6, Ccl11, Ccl27, Cxcl9, Cxcl11
Cytokines/receptors	II1b, Lk18, II34, II6r, II7r, Tnfrsf11b, II10, II24, II1rn, Cd40
Jak-Stat Pathway	Stat1, Stat2, Jak2
Complement	Cfh, C1qb, C1qa, SerpinG1
Pattern Recognition Rcpts	TIr2, TIr7, TIr8, Mrc1
Interferon Pathway	Ifngr1, Irf5, Irf9, Ifitm1
Inflammatory Mediators/DAMPs	Aif1, Ptgds, Ptgs1, Ptgs2, Lyz2, Mcpt10, Tdo2, Ubd, Ddx60, Cybb, Pla2g2a, Lyve1
Activated Macrophages	Chi3l1, Sparcl1, C1qb, C1qa, S100a8, S100a9
Cell Surface Receptors	S1pr1, Fcgr2b, Fcer1a,1g, Fcgr1a,2a,3a, Stab1, Cd163, Cd36, Cd68, Cd53, Clec4a, Clec4a3, Clec7a, Clec10a

Gene expression suggestive of proinflammatory response and immune dysregulation

Malignant mesothelioma – Vinylidene chloride Discussion

- Differentiated mesothelioma from VDC-exposed and vehicle control rats based on genomic profiling
 - Despite indistinguishable morphology
- Similarities in oncogenic and tissue remodeling pathways
- Overrepresentation of proinflammatory pathways and immune dysregulation in VDC mesotheliomas
- Exposure to VDC: glutathione pathway saturation, reactive VDC metabolites → tissue damage
- Additional studies needed to further define the role of inflammatory signature in the induction of mesothelioma in VDC-exposed rats

Questions?

- NTP Leadership
- NTP Investigative Pathology
 - Arun Pandiri, DVM, PhD
 - Sachin Bhusari, DVM, PhD
 - Lily Hong
 - Kiki Ton
- NTP Toxicologists
 - Michael Wide, PhD (VDC)
 - Mamta Behl, PhD (Cobalt)
 - Michelle Hooth, PhD (Cobalt)
 - June Dunnick, PhD (TBBPA)
- Biomolecular Screening Branch
 - Scott Auerbach, PhD
 - Alex Merrick, PhD

- CMPB Pathologists
- NIEHS Microarray Core
 - Rick Paules, PhD
 - Kevin Gerrish, PhD
- Bioinformatics and Biostatistics
 - Shyamal Peddada, PhD
 - Keith Shockley, PhD
 - Grace Kissling, PhD
- NTP Archives
- NIEHS Core Labs
 - Histology, Immunohistochemistry
 - Laser Capture Microdissection